Links are provided
to the published versions. If you do not have institutional access to the
journal or proceedings, either search for the paper title on Centaur using
quotation marks, or email me directly.
In prep
250. Establishing
a European Heliosphysics Community (EHC)
Jones, de Wit, et al. (inc M.J. Owens), white
paper, 2025
249. Using
solar wind data assimilation results to drive dynamic solar wind models
H. Turner, M. Owens, et al., to be submitted to Space Weather,
2025
248. Calibrating
probabilistic solar-wind forecasts driven by the Wang-Sheeley-Arge coronal
model
N.O. Edward-Inatimi, M.J. Owens, L. Barnard,
H. Turner, M. Marsh, S. Gonzi and M. Lang, to be submitted to Space Weather,
2025
247. Strong
interplanetary evolution of a coronal mass ejection from BepiColumbo
at 0.67 AU up to Mars
Y. Chi et al. (inc. M.J. Owens), to be submitted to Astrophys.
J., 2025
246. Magnetic
switchback formation: a review of proposed mechanisms
P. Wyper, J. Squire, et al (inc. M.J.
Owens), to submitted to Astron. & Astrophys., 2025
245. Evolution
and impact of switchbacks throughout the heliosphere
A. Mallet, C. Shi, A. Tenerani et al (inc M.J. Owens),
to submitted to Astron. & Astrophys., 2025
Under review
244. Ensemble
analog forecasts of solar wind proxies:
Quantification of the predictability and spectral performances
P.A. Simon, C.H.K. Chen and M.J. Owens, submitted to J. Space Weather
& Space Clim., 2025
243. Advancing
Ionospheric Irregularity Forecasts with ICON/MIGHTI Wind-Driven Insights
P. Tian et al. (inc M.J. Owens), submitted to Geophys. Res. Lett., 2025
242. Implications
of Using Spheroidal ‘Cone Model’ CMEs in Solar-wind Models
M.J. Owens, L.A. Barnard, C. Verbeke, B. McGinness, H. Turner, Y. Chi,
L. Mays, D. Gyeltshen and M. Lockwood, submitted to Space Weather, 2025
241. Extended Lead-Time Geomagnetic Storm Forecasting with Solar
Wind Ensembles and Machine Learning
M. Billcliff et al. (inc M.J.
Owens), submitted to Space Weather, 2025
240. The
May 2024 Event in the Context of Auroral Activity over the past 375 years
M. Lockwood, M.J. Owens, W. Brown and M. Vazquez, submitted to M.N. Roy. Astro. Soc., 2025
239.
Quantifying Uncertainties in Solar Wind
Forecasting Due to Incomplete Solar Magnetic Field Information
S.H. Heinemann et al. (inc M.J. Owens), Astrophys. J., in press, 2025
238. Sub-auroral
Heating at Jupiter Following a Solar Wind Compression
J. O’Donoghue et al (inc M.J. Owens), Geophys. Res. Lett., 52, e2024GL113751. doi:10.1029/2024GL113751,
2025
237. Statistical
analysis of comet disconnection events using STEREO HI and a data-assimilative
solar-wind model
S. Watson, C. Scott, M. Owens, L. Barnard and M. Lang, Astophys. J., 982, 66, doi:
10.3847/1538-4357/adb978
236. Adapting
Ensemble-Calibration Techniques to Probabilistic Solar-Wind Forecasting
N. Edward-Inatimi, M.J. Owens, L.A. Barnard,
H. Turner, M. Marsh, S. Gonzi and M. Lang, Space Weather, 22,
e2024SW004164, doi:10.1029/2024SW004164, 2024
235. The Importance of
Boundary Evolution for Solar-wind Modelling
M.J. Owens, L. Barnard and C.N. Arge, Scientific Reports, 14,
28975, doi:10.1038/s41598-024-80162-2, 2024
234. Coronal
Models and Detection of Open Magnetic Flux
E. Asvestari et al. (inc M.J. Owens), Astrophys. J., 971, 45, doi:
10.3847/1538-4357/ad5155, 2024
233. Solar Wind
Interactions with Comet C/2021 A1 Using STEREO HI and a Data-assimilative Solar
Wind Model
S. Watson, C. Scott, M. Owens and L. Barnard, Astrophys.
J., 970, 101, doi: 10.3847/1538-4357/ad50cf,
2024
232. A
Multi-Model Ensemble System for the outer Heliosphere (MMESH): Solar Wind
Conditions near Jupiter
M.J. Rutala, C.M. Jackman, M.J. Owens, C. Tao, A.R. Fogg, S.A. Murray, J. Geophys. Res., 129, e2024JA032613doi:10.1029/2024JA032613,
2024
231. A
Geomagnetic Estimate of Heliospheric Modulation Potential Over the Last 175
Years
M.J. Owens, M. Lockwood, L.A. Barnard, I. Usoskin, E. Asvestari, R. Muscheler, Solar
Phys., 299, 84, doi:10.1007/s11207-024-02316-9, 2024
230. Multi-source
connectivity drives solar wind variability in the heliosphere
S.L. Yardley et al (inc. M.J. Owens), Nature Astro., doi:10.1038/s41550-024-02278-9,
2024
229. Heliophysics Great Observatories and international
cooperation in Heliophysics: An orchestrated
framework for scientific advancement and discovery
Kepko et al. (inc. M. Owens), Adv. Space
Res., 73, 10, 5383-5405, doi:10.1016/j.asr.2024.01.011,
2024
228. Tracking
solar radio bursts using multilateration with a novel
Bayesian approach
L.A. Canizares, S.T. Badman, S.A. Maloney, M.J. Owens, D.M. Weigt, E.P.
Carley and P.T. Gallagher, Astron. & Astrophys.,
A182, 12, doi:10.1051/0004-6361/202347747, 2023
227. Analyses
for Graphical Records for a Total Solar Eclipse in 1230 May: A Possible
Reference for the “Medieval Grand Maximum”
H. Hayakawa, K. Murata, M.J. Owens and M. Lockwood, M.N. Roy. Astro. Soc., 530, 3, doi:10.1093/mnras/stad3874, 2024
226. On the
Origin of the sudden Heliospheric Open Magnetic Flux Enhancement during the
2014 Pole Reversal
S.G. Heinemann, M.J. Owens, M. Temmer, J.A. Turtle, C.N. Arge, C.
Henney, J. Pomoell, A. Avestari,
J.A. Linker, C. Downs, R. Caplan, S.J. Hofmeister, C. Scolini,
R.F. Pinto and M.S. Madjarska, Astrophys.
J., 965, 151, doi:10.3847/1538-4357/ad2b69, 2023
225. Reconstruction
of Carrington Rotation Means of Open Solar Flux over the Past 154 Years
M. Lockwood and M.J. Owens, Solar Phys., 299, 28, doi:10.1007/s11207-024-02268,
2024
224. Constraints
on Solar Wind Density and Velocity Based On Coronal
Tomography and Parker Solar Probe Measurements
K.A. Bunting, L. Barnard, M.J. Owens and H. Morgan, Astrophys.
J., 961, 64, doi:10.3847/1538-4357/ad1506, 2024
223. Reconstructing
sunspot number by forward-modelling open solar flux
M.J. Owens, M. Lockwood, L.A. Barnard, I. Usoskin, H.H. Hayakawa, B.J.S.
Pope, K. McCracken, Solar. Phys., 299, 3, doi:10.1007/s11207-023-02241-3,
2024
222.
Causal Analysis of Influence of the Solar
Cycle and Latitudinal Solar-Wind Structure on Corotation Forecasts
N. Chakraborty, M.J. Owens, H.
Turner and M. Lang, Solar Phys., 298, 142, doi:10.1007/s11207-023-02232-4,
2023
221.
Annual variations in the near-Earth solar
wind
M.J. Owens, M. Lockwood, L.A. Barnard, S. Yardley, H. Hietala, A. LaMoury and L. Vuorinen, Solar Phys., 298, 111, doi:10.1007/s11207-023-02193-8,
2023
220.
Long-term solar variability: ISWAT S1
cluster review for COSPAR Space Weather Roadmap
A.A. Pevtsov, D. Nandy, I. Usoskin, A.A. Pevtsov, C. Corti, L. Lefèvre, M. Owens, G. Li, N. Krivova,
C. Saha, B. Perri, A.S. Brun, A. Strugarek, M.A. Dayeh, Y.A. Nagovitsyn, R.
Erdélyi, Adv. Space Res., doi:10.1016/j.asr.2023.08.034, 2023
219.
Exploring the Solar Poles: The Last Great
Frontier of the Sun
D. Nandy, D. Banerjee, P. Bhowmik, A S. Brun, R.H. Cameron, S.E. Gibson, S. Hanasoge, L. Harra, D.M. Hassler, R. Jain, J. Jiang, L.
Jouve, D.H. Mackay, S.S. Mahajan, C.H. Mandrini, M. Owens, S. Pal, R.F. Pinto, C. Saha,
X. Sun, D. Tripathi, and I.G. Usoskin, Bulletin
of the AAS, doi:10.3847/25c2cfeb.1160b0ef, 2023
218.
Tianwen-1 and MAVEN observations of the
response of Mars to an interplanetary coronal mass ejection
B. Yu, Y. Chi, M.J. Owens, et al., Astrophys. J., 953, 105, doi:10.3847/1538-4357/acdcf8,
2023
217.
CME Propagation Through the Heliosphere:
Status and Future of Observations and Model Development
M. Temmer et al. (inc M.J. Owens), Adv. Space Res.,
doi:10.1016/j.asr.2023.07.003, 2023
216.
Slow Solar Wind Connection Science during
Solar Orbiter's First Close Perihelion Passage
S. Yardley et al. (inc M.J. Owens), Astrophys. J. Supp., 267, 11, doi:10.3847/1538-4365/acd24b,
2023
215.
The Dynamic Evolution of Mulitpoint
Interplanetary Coronal Mass Ejections Observed with BepiColumbo,
Tianwen-1 and MAVEN
Y. Chi, C. Shen, J. Lu, Z. Zhong, M. Owens, C. Scott, L. Barnard, B. Yu,
D. Heyner and H.-U. Auster, Astrophys. J. Lett., 951, L14, doi:10.3847/2041-8213/acd7e7, 2023
214.
SIR-HUXt – a particle filter data
assimilation scheme for assimilating CME time-elongation profiles
L.A. Barnard, M.J. Owens, C. Scott,
M. Lang and M. Lockwood, Space Weather,
21, e2023SW003487, doi:10.1029/2023SW003487, 2023
213.
Solar
wind data assimilation in an operational context: Use of near-real-time data
and the value of an L5 monitor
H. Turner, M. Lang, M.J. Owens, A.
Smith, P. Riley and S. Gonzi, Space
Weather, 21, e2023SW003457, doi:10.1029/2023SW003457,
2023
212. Sensitivity
of Model Estimates of CME Propagation and Arrival Time to Inner Boundary
Conditions
L.A. James, C.J. Scott, L.A. Barnard, M.J. Owens, M.S. Lang and S.
Jones, Space Weather, 21, e2022SW003289, doi:10.1029/2022SW003289, 2023
211. Universal
Time Variations in the Magnetosphere and the Effect of CME Arrival Time:
Analysis of the February 2022 Event that Led to the Loss of Starlink Satellites
M. Lockwood, M.J. Owens and L.
Barnard, J. Geophys.
Res., doi:10.1029/2022JA03117, 2023
210. Recalibration
of the Sunspot Number: Status Report
F. Clette, L. Lefèvre, T. Chatzistergos, H.
Hayakawa, V.M. Carrasco, R. Arlt, E.W. Cliver, T. Dudok de Wit, T. Friedli, N. Karachik, G. Kopp, M. Lockwood, S. Mathieu, A.
Muñoz-Jaramillo, M.J. Owens, D. Pesnell, A. Pevtsov, L.
Svalgaard, I. G. Usoskin, L. van Driel-Gesztelyi, J.M. Vaquero, Solar
Physics, 298, 44, doi:10.1007/s11207-023-02136-3, 2023
209. Fine–Scale
Structure in Cometary Dust Tails II: Further Evidence for a Solar Wind
Influence on Cometary Dust Dynamics from the Analysis of Striae in Comet C/2011
L4 Pan-STARRS
O. Price, G.H. Jones, K. Battams and M.J. Owens, Icarus, 115218, doi:10.1016/j.icarus.2022.115218,
2023
208. Modelling
cosmic radiation events in the tree-ring radiocarbon record
Q. Zhang, U. Sharma, J. Dennis, A. Scifo, M. Kuitems,
M.W. Dee, M.J. Owens and B.J.S.
Pope, Proc. A Roy. Soc., 478,
20220497, doi:10.1098/rspa.2022.0497, 2022
207. HUXt
- A computationally efficient reduced physics solar wind model
L. Barnard and M. Owens, Front.
Astron. Space Sci.,
10, doi:10.3389/fphy.2022.1005621, 2022
206. UK
Magnetosphere, Ionosphere & Solar-Terrestrial (MIST) Awards Taskforce: A
Perspective
M.T. Walach, O. Agiwal, O. Allanson, M.J. Owens,
I.J. Rae, J.K. Sandhu and A. Smith, Front. Astron. Space Sci., 9, doi:10.3389/fspas.2022.1011839,
2022
205. Application
of historic datasets to understanding Open Solar Flux and the 20th-century
Grand Solar Maximum. 2. Solar observations
M. Lockwood, M.J. Owens, S.L.
Yardley, I.O.I. Virtanen, A. Yeates and A. Munoz-Jaramillo, Front. Astron. Space Sci., 9, doi:10.3389/fspas.2022.976444,
2022
204. Application
of historic datasets to understanding Open Solar Flux and the 20th-century
Grand Solar Maximum. 1. Geomagnetic, ionospheric and sunspot observations
M. Lockwood, M.J. Owens, L.A.
Barnard, C.J. Scott, A. Frost, B. Yu and Y. Chi, Front. Astron. Space Sci., 9, doi:10.3389/fspas.2022.960775, 2022
203. Solar
Energetic Particle “Ground-level Enhancements” and the Solar Cycle
M.J. Owens, L.A. Barnard, B. Pope, M. Lockwood, I. Usoskin, E. Asvestari, Solar Phys., 297, 105, doi:10.1007/s11207-022-02037-x,
2022
202. Effect
of CME removal and observation age on solar wind data assimilation
H. Turner, M. Lang, M. Owens, P. Riley and S. Gonzi, Space Weather,
20, e2022SW003109, doi:10.1029/2022SW003109, 2022
201. Predictive
Capabilities of the Corotating Interaction Regions using STEREO in-situ
observations
Y. Chi, C. Shen, C. Scott, M. Xu, M.
Owens, Y. Wang, M. Lockwood, Space
Weather, 20, e2022SW003112, doi:10.1029/2022SW003112, 2022
200. Rate of
change of large-scale solar-wind structure
M.J. Owens, N. Chakraborty, H. Turner, M. Lang, P. Riley and Y. Chi, Sol.
Phys., 297:83, doi:10.1007/s11207-022-02006-4, 2022
199. Unifying
the Validation of Large-Scale Solar Wind Models
M.A. Reiss et al (inc M.J. Owens), Adv.
Space Res., doi:10.1016/j.asr.2022.05.026, 2022
198. Estimating
the open solar flux from in situ measurements
A.M. Frost, M.J. Owens, A. Macneil and M. Lockwood, Sol. Phys.,
297:82, doi:10.1007/s11207-022-02004-6, 2022
197. Evidence
from Galactic Cosmic Rays That the Sun Has Entered A
Secular Minimum in Solar Activity
F. Rahmanifard, A. P. Jordan, W. C. de Wet, N. A. Schwadron, J. K. Wilson, M.
J. Owens, H. E. Spence, P. Riley, Space Weather, 20, e2021SW002796,
doi:10.1029/2021SW002796, 2022
196. Towards
GIC forecasting: Increasing the time resolution of magnetic field forecasts
using statistical downscaling
C. Haines, M.J. Owens, L. Barnard, M. Lockwood, C.D. Beggan and A.W.P.
Thompson, Space Weather, 20, e2021SW002903, doi:10.1029/2021SW002903,
2022
195.
Quantifying
the uncertainty in CME kinematics derived from geometric modelling
L. Barnard, M.J. Owens, C.J. Scott, M. Lockwood, C.A. de Konig, T. Amerstorfer, J. Hinterreiter, C. Mostl, J. Davies, Space Weather, 19, e2021SW002841, doi: 10.1029/2021SW002841, 2021
194.
A statistical
evaluation of ballistic backmapping for the slow
solar wind: The interplay of solar wind acceleration and corotation
A.R. Macneil, M.J. Owens, A.J. Finley and S.P. Matt, M.N. Roy. Astro. Soc., 509, 2,
p2390-2403, doi: 10.1093/mnras/stab2965, 2021
193. In-Situ Multi-Spacecraft and Remote Imaging
Observations of the First CME Detected by Solar Orbiter and BepiColombo
E.E. Davies, C. Mostl, M.J.Owens, A.J. Weiss, T. Amerstorfer, J. Hinterreiter, M.
Bauer, R.L. Bailey, M.A. Reiss, R.J. Forsyth, T.S. Horbury, H. O’Brien,
V. Evans, V. Angelini, D. Heyner, I. Richter, H.U.
Auster, W. Magnes, W. Baumjohann, D. Fischer, D.
Barnes, J.A. Davies and R.A. Harrison, Astron.
Astrophys., 656, A2, doi:10.1051/0004-6361/202040113, 2021
192.
Using in-situ
solar-wind observations to generate inner-boundary conditions to
outer-heliosphere simulations, 1: Dynamic time warping applied to synthetic
observations
M.J. Owens and J.D. Nicholls, M.N. Roy.
Astro. Soc., 508, 2, p2575-2582, doi:
10.1093/mnras/stab2512,
2021 arXiv
191.
Multi-spacecraft study of the solar wind at solar
minimum: Dependence on latitude and transient outflows
R. Laker, T.S. Horbury, S.D. Bale, L. Matteini, T.
Woolley, L.D. Woodham, J.E. Stawarz, E.E. Davies, J.P. Eastwood, M.J. Owens,
H. O’Brien, V. Evans, V. Angelini, I. Richter, D. Heyner,
C.J. Owen, P. Louran and A. Federov,
Astron. & Astrophys., 652, A105, doi: 10.1051/0004-6361/202140679,
2021
190.
Modelling
the observed distortion of multiple (ghost) CME fronts in STEREO Heliospheric
imagers
Y. Chi, C. Scott, C. Shen, L. Barnard, M. Owens, M. Xu, J. Zhang, S.
Jones, Z. Zhong, B. Yu, M. Lang, Y. Wang and M. Lockwood, Astrophys.
J. Lett., 917, L16, doi:
10.3847/2041-8213/ac1203, 2021
189.
Coronal
hole detection and open magnetic flux
J.A. Linker, S.G. Heinemann, M. Temmer, M.J. Owens, R.M. Caplan, C.N.
Arge, E. Asvestari, V. Delouille,
C. Downs, S.J. Hofmeister, I.C. Jebaraj, M.S. Madjarska, R.F. Pinto, J. Pomoell,
E. Samara, C. Scolini and B. Vrsnak,
Astrophys. J., 918, 21, doi: 10.3847/1538-4357/ac090a, 2021
188. Improving Solar Wind Forecasting using Data
Assimilation
M. Lang, J. Witherington, H. Turner, M.J.
Owens and P. Riley, Space Weather,
in press, 19, e2020SW002698,
doi:10.1029/2020SW002698, 2021
187.
The
Influence of Latitudinal Solar-Wind Structure on the Accuracy of Corotation
Forecasts
H. Turner, M.J. Owens, M. Lang and S. Gonzi, Space Weather, 19,
e2021SW002802, doi:10.1029/2021SW002802, 2021
186. Constraining Suprathermal
Electron Evolution in a Parker Spiral Field with Cassini Observations
G.A. Graham, M.R. Bakrania, I.J. Rae, C.J. Owens,
A.P. Walsh and M.J. Owens, J. Geophys. Res.,
126, e2020JA028669, doi:10.1029/2020JA028669, 2021
185. Forecasting Occurrence and Intensity of Geomagnetic
Activity with Pattern-Matching Approaches
C. Haines, M.J. Owens, L.A. Barnard,
M. Lockwood, A. Ruffenach, K. Boykin and R. McGranaghan, Space Weather, 19, e2020SW002624,
doi:10.1029/2020SW002624, 2021
184. Constraining the location of the Outer Boundary of
the Earth’s Outer Radiation Belt
T. Bloch, C.E.J. Watt, M.J. Owens,
R.L. Thompson and O. Agiwal, Earth and Space Sci., 8, e2020EA001610, doi:10.1029/2020EA001610,
2021
183. Next generation particle precipitation: Mesoscale
prediction through machine learning (a case study and framework for progress)
R. McGranaghan, J. Ziegler, T. Bloch, S. Hatch, E. Camporeale, K. Lynch, M. Owens, J. Gjerloev,
B. Zhang and S.H. Skone, Space Weather,
19, e2020SW002684, doi:10.1029/2020SW002684, 2021
182. Using gradient boosting regression to improve
ambient solar wind model predictions
R.L. Bailey, M.A. Reiss, C.N. Arge, C. Mostl, M.J. Owens, U.V. Amerstorfer,
C.J. Henney, T. Amerstorfer, A.J. Weiss and J. Hinterreiter, Space
Weather, 19, e2020SW002673, doi:10.1029/2020SW002673, 2021
181.
Cosmic
Meteorology
M. Lockwood and M. Owens, Astron. & Geophys.,
62, 3, 12-19, doi: 10.1093/astrogeo/atab065,
2021 arXiv
180.
Autumn MIST
2020: Zooming through the MIST
M.J. Owens, O. Allanson and M. Maunder, Astron. & Geophys., 62, 3, 24-27, doi:
10.1093/astrogeo/atab067, 2021
179. Extreme space-weather events and the solar cycle
M.J. Owens, M. Lockwood, L.A. Barnard, C. Scott, C. Haines, A. Macneil, Solar
Phys., 296, 82, doi: 10.1007/s11207-021-01831-3, 2021
178. Unsupervised Classification of Solar Wind Source
Regions
T. Bloch, C. Watt, M. Owens, L. McInnes and A.R. Macneil, in
“Machine Learning, Statistics and Data Mining for Heliophysics”,
ed. M. Bobra and J. Mason, doi: 10.5281/zenodo.1412824, 2021
177. Semi-annual, annual and Universal Time variations
in the magnetosphere and in geomagnetic activity: 4. Polar Cap motions and
origins of the Universal Time effect
M. Lockwood, C. Haines, L.A. Barnard, M.J.
Owens, C.J. Scott, A. Chambodut and K.A.
McWilliams, J. Space Weather Space Clim.,
11, 15, doi:
10.1051/swsc/2020077, 2021
176. Why are ELEvoHI CME
arrival predictions different if based on STEREO-A or STEREO-B heliospheric
imager observations?
J. Hinterreiter, T. Amerstorfer,
M.A. Reiss, C. Mostl, M. Temmer, M. Bauer, U.V. Amerstorfer, R.L. Bailey, A.J. Weiss, J.A. Davies, L.A.
Barnard and M.J. Owens, Space Weather, 19, e2020SW002674,
doi:10.1029/2020SW002674, 2021
175. Evolving Flow Properties of Magnetic Inversions
Observed by Helios
A.R. Macneil, M.J. Owens, R.T. Wicks
and M. Lockwood, M.N. Roy. Astro. Soc., 501, 4, 5379-5392, doi:10.1093/mnras/staa3983, 2021
174. Graphical Evidence for the Solar Coronal Structure
during the Maunder Minimum: Comparative Study of the Total Eclipse Drawings in
1706 and 1715
H. Hayakawa, M. Lockwood, M.J.
Owens and M. Soma, Space Weather
& Space Clim., 11, 1, doi:10.1051/swsc/2020035,
2021
173. Semi-annual, annual and Universal Time variations
in the magnetosphere and in geomagnetic activity: 3. Modelling
M. Lockwood, M.J. Owens, L.A.
Barnard, C.E. Watt, C.J. Scott, J. Coxon and K.A. McWilliams, submitted to Space Weather and Space Clim., 10, 61,
doi:10.1051/swsc/2020023, 2020
172. Coherence of Coronal Mass Ejections in Near-Earth
Space
M.J. Owens, Solar Physics, 295,
148, doi:10.1007/s11207-020-01721-0, 2020
171.
The Solar Wind Angular Momentum Flux as Observed by
Parker Solar Probe
A.J. Finley, S.P. Matt, V. Reville, R.F. Pinto, M. Owens, J.C. Kasper, K.E. Korreck, A.W. Case, M.L. Stevens, P.
Whittlesey, D. Larson and R. Livi., Astrophys. J. Lett.,
902, L4, doi:10.3847/2041-8213/abb9a5, 2020
170.
The Solar Orbiter magnetometer
T.S. Horbury et al (including M.J. Owens),
Astron & Astrophys.,
642, A9, 11, doi:10.1051/0004-6361/201937257, 2020
169. The Solar Orbiter Science Activity Plan: Translating solar physics
questions into action
I. Zouganelis et al (including M.J. Owens), Astron. Astrophys., 642, A3, 19,
doi:10.1051/0004-6361/202038445, 2020
168. Ensemble CME modelling constrained by heliospheric imager
observations
L. Barnard, M.J. Owens, C.J. Scott,
C.A. de Koning, AGU Advances, 1,
e2020AV000214, doi:10.1029/2020AV000214, 2020
167. Parker Solar Probe Observations of Suprathermal
Electron Flux Enhancements Originating from Coronal Hole Boundaries
A.R. Macneil, M.J. Owens, L. Bercic and A.J. Finley, M.N. Roy. Astro. Soc.,
staa2660, doi:10.1093/mnras/staa2660, 2020
166. Characterization of the Space Radiation Environment Through a
Modern Secular Minimum
F. Rahmanifard, W. C. Wet, N. A. Schwadron, M. J. Owens, A. P. Jordan, J. Wilson, C. J. Joyce, H. E. Spence, C.
W. Smith and L. W. Townsend, Space
Weather, 18, e2019SW002428, doi:10.1029/2019SW002428, 2020
165. The Solar Corona during the Total Eclipse on 1806 June 16:
Graphical Evidence of the Coronal Structure during the Dalton Minimum
H. Hayakawa, M.J. Owens, M.
Lockwood, M. Sôma, Astrophys. J., 900, 114, doi: 10.3847/1538-4357/ab9807, 2020
164. Ghost fronts of CMEs to predict the arrival time and speed of CME
at Venus and Earth
Y. Chi, C. Scott, C. Shen, M.
Owens, M. Lang, M. Xu, Z. Zhong, J. Zhang, Y. Wang and M. Lockwood, Astrophys. J., 899:143, doi: 10.3847/1538-4357/aba95a, 2020
163. Solar Cycle
L. van Driel-Gesztelyi and M.J. Owens,
Oxford
Research Encyclopedia of Physics, Oxford
University Press (ed. E.R. Priest), doi:10.1093/acrefore/9780190871994.013.9,
2020
162.
Semi-annual, annual and Universal Time variations
in the magnetosphere and in geomagnetic activity: 2. The effect of solar wind
variations
M. Lockwood, K.A. McWilliams, M.J. Owens,
L.A. Barnard, C.E. Watt, C.J. Scott, A. Macneill and
J. Coxon, Space Weather and Space Climate,
30, 24, doi: 10.1051/swsc/2020033, 2020
161.
The Value of CME Arrival-Time Forecasts for Space
Weather Mitigation
M.J. Owens, M. Lockwood and L.A.
Barnard, Space Weather, 18,
e2020SW002507, doi:10.1029/2020SW002507, 2020
160.
Semi-annual, annual and Universal Time variations
in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data
M. Lockwood, M.J. Owens, L.A.
Barnard, C. Haines, C.J. Scott, K.A. McWilliams and J. Coxon, J. Space Weather Space Clim., 10, 23,
doi:10.1051/swsc/2020023, 2020
159.
The Evolution of Inverted Magnetic Fields Through
the Inner Heliosphere
A.R. Macneil, M.J. Owens, R.T. Wicks, M. Lockwood, S.N. Bentley and M.Lang, M.N. Roy. Astro. Soc.,
494,3, 3642-3655, doi: 10.1093/mnras/staa951, 2020
158.
Data-Driven Classification of Coronal Hole and
Streamer Belt Solar Wind
T. Bloch, C.E. Watt, M.J. Owens and
L. McInnes, Sol. Phys., 295, 41,
doi:10.1007/s11207-020-01609-z, 2020
157.
Forecasting the Ambient Solar Wind with Numerical
Models. II. An adaptive prediction system for specifying solar wind speed near
the Sun
M.A. Reiss, P.J. MacNeice, K. Muglach, C.N. Arge, C. Mostl, P. Riley, J. Hintereiter,
R.L. Bailey, A.J. Weiss, M.J. Owens,
T. Amerstorfer
and U. Amerstorfer, Astrophys. J., 891, 165, doi: 10.3847/1538-4357/ab78a0, 2020
156.
A Computationally Efficient, Time-Dependent Model
of the Solar Wind for Use as a Surrogate to Three-Dimensional Numerical
Magnetohydrodynamic Simulations
M.J. Owens, M. Lang, L.A. Barnard,
P. Riley, M. Ben-Nun, C.J. Scott, M. Lockwood, M. Reiss, C.N. Arge, S. Gonzi, Sol. Phys., 295, 43,
doi:10.1007/s11207-020-01605-3, 2020
155.
Quantifying the latitudinal representivity
of in situ solar wind speed observations
M.J. Owens, M. Lang, P. Riley, M.
Lockwood and A. Lawless, J. Space Weather
and Space Climate, 8, 10, doi:10.1051/swsc/2020009,
2020
154.
Signatures of coronal loop opening via interchange
reconnection in the slow solar wind at 1 AU
M.J. Owens, M. Lockwood, A. Macneil
and D. Stansby, Solar Physics,
295, 37, doi:10.1007/s11207-020-01601-7, 2020
153.
Solar wind structure
M.J. Owens, Oxford Research Encyclopedia of
Physics, Oxford University Press (ed. E.R. Priest),
doi:10.1093/acrefore/9780190871994.013.19, 2020
152.
Radial Evolution of Sunward Strahl Electrons in the
Inner Heliosphere
A. Macneil, M.J. Owens, M. Lockwood,
S. Stverak and C.J. Owens, Sol. Phys., 295, 16, doi:
10.1007/s11207-019-1579-3, 2020
151.
The variation of geomagnetic storm duration with
intensity
C. Haines, M.J. Owens, L.A. Barnard,
M. Lockwood and A. Ruffenach, Sol. Phys.,
294: 154, Doi:10.1007/s11207-019-1546-z, 2019
150.
Direct Detection of Solar Angular Momentum Loss
with the Wind Spacecraft
A.J. Finley, A.L. Hewitt, S.P. Matt, M.J.
Owens, R.F. Pinto, V. Reville, Astrophys. J. Lett., 885, L30,
doi:10.3847/2041-8213/ab4ff4, 2019
149.
Solar angular momentum loss over the past several
millennia
A.J. Finley, S. Deshmukh, S.P. Matt, M.J.
Owens and C.-J. Wu, Astrophys. J., 883, 67,
doi:10.3847/1538-4357/ab3729, 2019
148.
Thunderstorm occurrence at ten sites across Great
Britain over 1884-1993
M. Valdivieso, M.J. Owens, C.J.
Scott, E. Hawkins and S. Burt, Geosci. Data J.,
00: 1-12, doi: 10.1002/gdj3.75,
2019
Data: https://catalogue.ceda.ac.uk/uuid/2503df629a8a485e8582e5150876b210
147.
Near-Earth solar wind forecasting using corotation
from L5: The error introduced by heliographic latitude offset
M.J. Owens, P. Riley, M. Lang and M.
Lockwood, Space Weather, 17,
1105-1113, doi:10.1029/2019SW002204, 2019
146.
On the origin of Ortho-Gardenhose
Heliospheric Flux
M. Lockwood, M.J. Owens and A.
Macneil, Sol. Phys., 294: 85,
doi:10.1007/s11207-019-1478-7, 2019
145.
Towards the construction of a solar wind
“reanalysis” dataset:
Application to the first perihelion pass of Parker Solar Probe
M.J. Owens, M. Lang, P. Riley and D.
Stansby, Sol. Phys., 294:83,
doi:10.1007/s11207-019-1479-6, 2019
144.
Extracting inner-heliosphere solar wind speed
information from Heliospheric Imager observations
L.A. Barnard, M.J. Owens and C.J.
Scott, Space Weather, 17, 925-938, doi: 10.1029/2019SW002226,
2019
143.
Time-of-day/time-of-year response functions of
planetary geomagnetic indices
M. Lockwood, A. Chambodut, I.D. Finch, L.A. Barnard, M.J. Owens and C. Haines, J. Space Weather and Space Climate, 9,
A20, doi:10.1051/swsc/2019017, 2019
142.
Using ghost fronts within STEREO Heliospheric
Imager data to infer the evolution in longitudinal structure of a coronal mass
ejection
C.J. Scott, M.J. Owens, C.A. de
Koning, L.A. Barnard, S.R. Jones, and J. Wilkinson, Space Weather, 17, 539– 552, doi:10.1029/2018SW002093, 2019
141.
Capturing uncertainty in magnetospheric ultra-low
frequency wave models
S.N. Bentley, C.E. Watt, I.J. Rae, M.J.
Owens, R.K. Murphy, M. Lockwood and J. Sandhu, Space Weather, 17, 599– 618,
doi:10.1029/2018SW002102, 2019
140.
The development of a space climatology: 3. The
evolution of distributions of space weather parameters with timescale
M. Lockwood, S. Bentley, M.J. Owens,
L.A. Barnard, C.J. Scott, C.E. Watt, O. Allanson and M.P. Freeman, Space Weather, 17, 180–209,
doi:10.1029/2018SW002017, 2019
139.
The development of a space climatology: 2. The
distribution of power input into the magnetosphere on a 3-hourly timescale
M. Lockwood, S. Bentley, M.J. Owens,
L.A. Barnard, C.J. Scott, C.E. Watt, O. Allanson and M.P. Freeman, Space Weather, 17, 157–179,
doi:10.1029/2018SW002016, 2019
138.
A variational approach to data assimilation in the
solar wind
M. Lang and M. Owens, Space Weather, 17, 59–83,
doi:10.1029/2018SW001857, 2019
137.
The development of a space climatology: 1.
Solar-wind magnetosphere coupling as a function of timescale
M. Lockwood, S. Bentley, M.J. Owens,
L.A. Barnard, C.J. Scott, C.E. Watt and O. Allanson, Space Weather, 17, 133–156, doi:
10.1029/2018SW001856, 2019
136.
A homogeneous aa index: 2. Hemispheric asymmetries
and the equinoctial variation
M. Lockwood, L.A. Barnard, M.J. Owens
and E. Clarke, Space Weather and Space
Climate, 8, A58, doi:10.1051/swsc/2018044, 2018
Data: https://www.swsc-journal.org/articles/swsc/olm/2018/01/swsc180022/swsc180022.html
135.
The State of the Solar Wind, Magnetosphere and
Ionosphere During the Maunder Minimum
P. Riley, R. Lionello, J.A. Linker, M.J.
Owens, Proceedings of the
International Astronomical Union, 13(S340), 247-250.
doi:10.1017/S1743921318001199, 2018
134.
Long-term variations in the heliosphere
M.J. Owens, M. Lockwood, P. Riley,
L. Barnard, Proceedings of the
International Astronomical Union, 13(S340), 108-114, doi:10.1017/S1743921318000972, 2018
133.
A homogeneous aa index: 1. Secular variation
M. Lockwood, L.A. Barnard, M.J. Owens
and E. Clarke, Space Weather and Space
Climate, 8, A53, doi:10.1051/swsc/2018038, 2018
132.
Generation of inverted heliospheric magnetic flux
by coronal loop opening and slow solar wind release
M.J. Owens, M. Lockwood, L.A.
Barnard and A. MacNeil, Astrophys. J. Lett., 868, 1, doi:
10.3847/2041-8213/aaee82, 2018
131.
Time-Window Approaches to Space-Weather Forecast
Metrics: A Solar Wind Case Study
M.J. Owens, Space Weather, 16, doi:10.1029/2018SW002059, 2018
130.
Assessing the quality of models of the ambient
solar wind
P. MacNeice, L. Jian, S.K. Antiochos, C.N. Arge, C.D. Bussy-Virat,
M.L. DeRosa, B.V. Jackson, J.A. Linker, Z. Mikic, M.J. Owens, A.J. Ridley, P. Riley, N.
Savani, I. Sokolov, Space Weather, doi:10.1029/2018SW002040,
2018
129.
Fine-Scale Structure in Cometary Dust Tails I:
Analysis of Striae in Comet C/2006 P1 (McNaught) through Temporal Mapping
O. Price, G.H. Jones, J. Morrill, M.
Owens, K. Battams, H. Morgan, M. Druckmuller, S. Deiries, Icarus, 319, 540-557, doi:10.1016/j.icarus.2018.09.013,
2018
128.
Solar wind and heavy ion properties of
interplanetary coronal mass ejections
M.J. Owens, Solar Physics, 293: 122, doi:10.1007/s11207-018-1343-0, 2018
127.
The role of empirical space-weather models (in a
world of physics-based numerical simulations)
M.J. Owens, P. Riley and T. Horbury,
Proceedings IAU Symposium No. 335,
Cambridge University Press, Eds C. Foullon & O.E.
Malandraki, doi:10.1017/S1743921317007128, 2018
126.
Ion charge states and potential geoeffectiveness:
The role of coronal spectroscopy for space-weather forecasting
M.J. Owens, M. Lockwood and L.A.
Barnard, Space Weather, 16,
doi:10.1029/2018SW001855, 2018
125.
ULF wave activity in the magnetosphere: resolving
solar wind interdependencies to identify driving mechanisms
S. Bentley, C.E. Watt, M.J. Owens
and I.J. Rae, J. Geophys.
Res., 123, doi: 10.1002/2017JA024740,
2018
124.
What can the annual 10Be solar activity
reconstructions tell us about historic space weather?
L. Barnard, K.G. McCracken, M.J. Owens
and M. Lockwood, J. Space Weather Space Clim., 18, A23, doi: 10.1051/swsc/2018014, 2018
123.
Space Climate and Space Weather over the past 400
years: 2. Geomagnetic Storms and Substorms
M.Lockwood, M.J.
Owens, L.A. Barnard , C.J. Scott, C.E. Watt and S.
Bentley, J. Space Weather Space Clim.,
8, A12, doi: 10.1051/swsc/2017048, 2018
122.
The Maunder Minimum and the Little Ice Age: An
update from recent reconstructions and climate simulations
M.J. Owens, M. Lockwood, E. Hawkins,
I. Usoskin, G.S. Jones, L. Barnard, A. Schurer and J.
Fasullo, Space Weather and Space Climate,
7, A33, doi:10.1051/swsc/2017034,
2017
121.
Sunward strahl: A method
to unambiguously determine open solar flux from in situ spacecraft measurements
using suprathermal electron data
M.J. Owens, M. Lockwood, P. Riley
and J. Linker, J. Geophys.
Res., 122, 10,980–10,989, doi: 10.1002/2017JA024631,
2017
120.
Probabilistic solar wind forecasting using large
ensembles of near-Sun conditions with a simple “upwind” scheme
M.J. Owens and P. Riley, Space Weather, 15, 1461–1474
doi:10.1002/2017SW001679, 2017
119.
Data Assimilation in the Solar Wind: Challenges and
First Results
M. Lang, P. Browne, P.J. van Leeuwen and M.J.
Owens, Space Weather, 15, 1490–1510, doi:
10.1002/2017SW001681, 2017
118.
The Open Flux Problem
J. A. Linker, R. M. Caplan, C. Downs, P. Riley, Z. Mikic,
R. Lionello, C. J. Henney, C.N. Arge, J. Liu, M. Derosa, A. Yeates and M. J. Owens, Astrophys. J., 848:70 (11pp), 2, doi:10.3847/1538-4357/aa8a70, 2017
117.
Space Climate and Space Weather over the past 400
years: 1. The Power Input to the Magnetosphere
M. Lockwood, M.J. Owens, L.A.
Barnard, C.J. Scott, and C.E. Watt, J.
Space Weather Space Clim., 7, A25, doi: 10.1051/swsc/2017019,
2017
116.
Interplanetary magnetic field properties and
variability near Mercury’s orbit
M.K. James, S.M. Imber, E.J. Bunce, T.K. Yeoman, M. Lockwood, M.J. Owens and J.A. Slavin, J. Geophys. Res.,
122, 7907–7924, doi:10.1002/2017JA024435, 2017
115.
Tracking CMEs using data from the Solar Stormwatch project; observing deflections and other
properties
S. Jones, L. Barnard, C. Scott, M.J.
Owens and J. Wilkinson, Space Weather,
15, 1125–1140, doi:10.1002/2017SW001640, 2017
114.
Decadal trends in the diurnal variation of galactic
cosmic rays observed using neutron monitor data
S.R. Thomas, M.J. Owens, M. Lockwood
and C.J. Owen, Ann. Geophys.,
35, 825-838, doi: 10.5194/angeo-35-825-2017,
2017
113.
Coronal mass ejections are not coherent
magnetohydrodynamic structures
M.J. Owens, M. Lockwood and L.Barnard, Nature Sci. Rep., 7:1, 4152, doi: 10.1038/s41598-017-04546-3, 2017
112.
Coronal and heliospheric magnetic flux circulation
and its relation to open solar flux evolution
M. Lockwood, M.J. Owens, S.M. Imber,
M.K. James, E.J. Bunce, and T.K. Yeoman, J.
Geophys. Res., doi:
10.1002/2016JA023644, 2017
111.
Testing the current paradigm for space weather
prediction with heliospheric imagers
L.A. Barnard, C.A. de Koning, C.J. Scott, M.J.
Owens, J. Wilkinson and J.A. Davies, Space
Weather, doi: 10.1002/2017SW001609, 2017
110.
Probabilistic solar wind and geomagnetic
forecasting using an analogue ensemble or “similar day” approach
M.J. Owens, P. Riley and T.S.
Horbury, Sol. Phys., 292:69,
doi:10.1007/s11207-017-1090-7, 2017
109.
Frost fairs, sunspots and the Little Ice Age
M. Lockwood, M. Owens, E. Hawkins,
G. Jones and I. Usoskin, Astron. & Geophys., 58 (2): 2.17-2.23,
doi:10.1093/astrogeo/atx057, 2017
108.
The space environment before the space age
L. Barnard, M. Owens and C. Scott, Astron. & Geophys.,
58 (2): 2.12-2.16, doi:10.1093/astrogeo/atx056, 2017
107.
Forecasting the Properties of the Solar Wind using
Simple Pattern Recognition
P. Riley, M. Ben Nun, M.J. Owens and
T.S. Horbury, Space Weather, doi: 10.1002/2016SW001589,
2017
106.
Assessment of different sunspot number series using
the cosmogenic isotope 44Ti in meteorites
E. Asvestari, I.G. Usoskin, G.A. Kovaltsov,
M.J. Owens, N.A. Krivova
and C. Taricco, MNRAS,
467 (2): 1608-1613, doi:10.1093/mnras/stx190,
2017
105.
Global solar wind
variations over the last four centuries
M.J. Owens, M. Lockwood and P.
Riley, Nature Sci. Reports, 7:41548,
doi:10.1038/srep41548, 2017
Data: https://www.nature.com/articles/srep41548#Sec6
104.
Magnetic field inversions at 1 AU: Comparisons
between mapping predictions and observations
B. Li, I.H. Cairns, M.J. Owens, D. Neudegg, V.V. Lobzin and G.
Steward, J. Geophys.
Res., 121, 10, 728–10, 743, doi:10.1002/2016JA023023, 2016
103.
Improving solar wind persistence forecasts:
Removing transient space weather events and using observations away from the
Sun-Earth line
P. Kohutova, F.-X. Bocquet, E. Henley and M.J. Owens, Space Weather, 14, 802–818, doi:10.1002/2016SW001447, 2016
102.
Near-Earth Heliospheric Magnetic Field Intensity
Since 1800. Part 2: Cosmogenic Radionuclide Reconstructions
M.J. Owens, E. Cliver, K.G.
McCracken, J. Beer, L. Barnard, M. Lockwood, A. Rouillard, D. Passos, P. Riley,
I. Usoskin, Y-M. Wang, J. Geophys. Res., 121, 7, 6064-6074,
doi:10.1002/2016JA022550, 2016
101.
Near-Earth Heliospheric Magnetic Field Intensity
Since 1800. Part 1: Geomagnetic and Sunspot Reconstructions
M.J. Owens, E. Cliver, K.G.
McCracken, J. Beer, L. Barnard, M. Lockwood, A. Rouillard, D. Passos, P. Riley,
I. Usoskin, Y-M. Wang, J. Geophys. Res., 121, 7, 6048-6063,
doi:10.1002/2016JA022529, 2016
100.
On the origins and timescales of geoeffective IMF
M. Lockwood, M.J. Owens, L.A.
Barnard, S. Bentley, C.J. Scott and C.E. Watt, Space Weather, 14, 406–432, doi:
10.1002/2016SW001375, 2016
99.
An assessment of sunspot number data composites:
1845-2014
M. Lockwood, M.J. Owens, L. Barnard
and I.G. Usoskin, Astrophys. J., 824, 52, doi:
10.3847/0004-637X/824/1/54, 2016
98.
Remember, remember the 5th of November:
Was that thunder I heard or not?
M.J. Owens, Weather, 71(6), 134-137, doi:10.1002/wea.2725, 2016
97.
Tests of sunspot number sequences: 4.
Discontinuities around 1945 in various sunspot number and sunspot group number
reconstructions
M. Lockwood, M.J. Owens and L.A.
Barnard, Sol. Phys., 291: 2843.
doi:10.1007/s11207-016-0967-1, 2016
96.
Tests of sunspot number sequences: 3. Effects of
regression procedures on the calibration of historic sunspot data
M. Lockwood, M.J. Owens, L.A.
Barnard and I.G. Usoskin, Sol. Phys.,
p.1-13, doi: 10.1007/s11207-015-0829-2,
2016
95.
Tests of sunspot number sequences: 2. Using
geomagnetic and auroral data
M. Lockwood, C.J. Scott, M.J. Owens,
L.A. Barnard and H. Nevanlinna, Sol. Phys., 1-18, doi: 10.1007/s11207-016-0913-2, 2016
94.
Tests of sunspot number sequences: 1. Using
ionosonde data
M. Lockwood, C.J. Scott, M.J. Owens,
L.A. Barnard and H. Nevanlinna, Sol. Phys., p.1-25, doi: 10.1007/s11207-016-0855-8, 2016
93.
Do the legs of magnetic clouds contain twisted
flux-rope magnetic fields?
M.J. Owens, Astrophys. J., 818, 197, doi: 10.3847/0004-637X/818/2/197, 2016
92.
A new calibrated sunspot group series since 1749:
Statistics of active day fractions
I.G. Usoskin, G.A. Kovaltsov, M. Lockwood, K. Mursula, M. Owens
and S.K. Solanki, Sol. Phys., p.1-24,
doi:10.1007/s11207-015-0838-1, 2016
91.
Lightning as a space-weather hazard: UK
thunderstorm activity modulated by the passage of the heliospheric current
sheet
M.J. Owens, C.J. Scott, A. Bennett,
S.R. Thomas, M. Lockwood, R.G. Harrison and M.M. Lam, Geophys. Res. Lett., 42, 9624, doi:10.1002/2015GL066802, 2015
90.
Differences between the CME fronts identified and
tracked by an expert, an automated algorithm and the Solar Stormwatch
project
L. Barnard, C. Scott, M. Owens, M.
Lockwood, S. Crothers, J. Davies and R. Harrison, 13, 10, 709-725, doi: 10.1002/2015SW001280,
Space Weather, 2015
89.
The heliospheric Hale cycle over the last 300 years
and its implications for a “lost” late 18th century solar cycle
M.J. Owens, K.G. McCracken, M.
Lockwood, L. Barnard, J. Space Weather
Space Clim., 5, A30, doi:10.1051/swsc/2015032,
2015
88.
The Maunder minimum (1645-1715) was indeed a Grand
minimum: A reassessment of multiple datasets
I.G. Usoskin, R. Arlt, E. Asvestrari, E. Hawkins, M.
Kapyla, G.A. Kovaltsov, N. Krivova,
M. Lockwood, K. Mursula, J. O’Reilly, M. Owens, C.J. Scott, D.D. Sokoloff,
S.K. Solanki, W. Soon and J.M. Vaquero, Astron.
Astrophys., 581, 19, A95,
doi:10.1051/0004-6361/201526652, 2015
87.
Solar Stormwatch:
tracking solar eruptions
L. Barnard, C. Scott, M. Owens, M.
Lockwood, K. Tucker-Hood, J. Wilkinson, B. Harder and E. Beaton, Astron. Geophys.,
56, 4, p20-24, 2015
86.
Inferring the Structure of the Solar Corona and
Inner Heliosphere during the Maunder Minimum using Global Thermodynamic MHD
Simulations
P. Riley, R. Lionello, J.A. Linker, E. Cliver, A. Balogh, J. Beer, P.
Charbonneau, N. Crooker, M. DeRosa, M. Lockwood, M. Owens, K. McCracken, I. Usoskin and S. Koutchmy,
Astrophys. J., 802, 105,
doi:10.1088/0004-637X/802/2/105, 2015
85.
Near-Earth cosmic ray decreases associated with
remote coronal mass ejections
S.R. Thomas, M.J. Owens, M.
Lockwood, L. Barnard and C.J. Scott, Astrophys. J.,
801, 5, doi:10.1088/0004-637X/801/1/5, 2015
84.
Validation of a priori CME arrival predictions made
using real-time heliospheric imager observations
K. Tucker-Hood, C. Scott, M. Owens,
D. Jackson, L. Barnard, J.A. Davies, S. Crothers, R. Simpson, N.P. Savani, J.
Wilkinson, B. Harder, G.M. Eriksson, E.M.L. Baeten, L. Lau Wan Wah, Space Weather, 13, 35–48,
doi:10.1002/2014SW001106, 2015
83.
Statistical analysis of magnetic cloud erosion by
magnetic reconnection
A. Ruffenach, B. Lavraud, C. J. Farrugia, P. Démoulin, S. Dasso, M. J. Owens, J.-A. Sauvaud, A. P.
Rouillard, A. Lynnyk, C. Foullon,
N. P. Savani, and J. G. Luhmann, J. Geophys. Res., 120, 43–60,
doi:10.1002/2014JA020628, 2015
82.
The Solar Stormwatch CME
catalogue: Results from the first space weather citizen science project
L. Barnard, C. Scott, M. Owens, M.
Lockwood, K. Tucker-Hood, S. Thomas, S. Crothers, J. Davies, R. Harrison, C.
Lintott, A. Smith, R. Simpson, N. Waterson, J. O’Donnell, S. Bamford, F.
Romeo, M. Kukula, N. Savani, J. Wilkinson, E. Baeten, L. Poeffel
and B. Harder, Space Weather, 12,
657–674, doi:10.1002/2014SW001119, 2014
81.
Galactic cosmic rays in the heliosphere
S.R. Thomas, M.J. Owens and M.
Lockwood, Astron. & Geophys, 55
(5), 5.23-5.25, doi:10.1093/astrogeo/atu214, 2014
80.
Modulation of UK lightning by heliospheric magnetic
field polarity
M.J. Owens, C.J. Scott, M. Lockwood,
L. Barnard, R.G. Harrison, K. Nicoll, C. Watt and A.J. Bennett, Env. Phys. Lett., 9, 115009, doi:10.1088/1748-9326/9/11/115009, 2014
79. The science case for
an orbital mission to Uranus: Exploring the origins and evolution of ice giant
planets
C.S. Arridge et al. (including M.J.
Owens), Planet. Space Sci., 104, 122-140, doi:10.1016/j.pss.2014.08.009,
2014
78. Centennial variations
in sunspot number, open solar flux and streamer belt width: 3. Modelling
M. Lockwood and M.J. Owens, J. Geophys. Res.,
119, doi:10.1002/2014JA019973, 2014
77. Centennial variations
in sunspot number, open solar flux and streamer belt width: 2. Comparison with
geomagnetic data
M. Lockwood, M.J. Owens, L. Barnard,
J. Geophys. Res.,
119, doi:10.1002/2014JA019972,
2014
76. Centennial variations
in sunspot number, open solar flux and streamer belt width: 1. Correction of
the sunspot number record since 1874
M. Lockwood, M.J. Owens, L. Barnard,
J. Geophys. Res.,
119, doi:10.1002/2014JA019970, 2014
75.
Comparison of interplanetary signatures of
streamers and pseudostreamers
N.U. Crooker, R.L. McPherron and M.J.
Owens, J. Geophys.
Res., 119, 4157–4163, doi:10.1002/2014JA020079, 2014
74.
Ensemble downscaling in coupled solar-wind
magnetosphere modelling for space-weather forecasting
M.J. Owens, T.S. Horbury, R.T.
Wicks, S.L. McGregor, N.P. Savani and M. Xiong, Space Weather, 12, 395-405, doi:10.1002/2014SW001064, 2014
73.
Evidence for solar wind modulation of lightning
C.J. Scott, R.G. Harrison, M.J. Owens,
M. Lockwood and L. Barnard, Env. Phys.
Lett., 9, 055004, doi:10.1088/1748-9326/9/5/055004, 2014
72.
Galactic cosmic ray modulation near the
heliospheric current sheet
S.R. Thomas, M.J. Owens, M. Lockwood
and C.J. Davis Sol. Phys.,
doi:10.1007/s11207-014-0493-y, 2014
71.
Reconstruction of Geomagnetic Activity and
Near-Earth Interplanetary Conditions over the Past 167 Years: 4. Near-Earth
Solar Wind Speed, IMF, and Open Solar Flux
M. Lockwood, H. Nevanlinna, L. Barnard, M.J. Owens, R.G. Harrison, A.P
Rouillard, and C.J. Scott, Ann. Geophys., 32, 383–399,
doi:10.5194/angeo-32-383-2014, 2014
70.
Reconstruction of Geomagnetic Activity and
Near-Earth Interplanetary Conditions over the Past 167 Years: 3. Improved
representation of solar cycle 11
M. Lockwood, H. Nevanlinna, M. Vokhmyanin,
D. Ponyavin, S. Sokolov, L. Barnard, M.J. Owens, R.G. Harrison, A.P.
Rouillard, and C.J. Scott, Ann. Geophys., 32, 367–381,
doi:10.5194/angeo-32-367-2014, 2014
69.
Solar cycle evolution of the dipolar and
pseudostreamer belts and their relation to the slow solar wind
M.J. Owens, N.U. Crooker and M.
Lockwood, J. Geophys.
Res., 119, 36-46, doi:10.1002/2013JA019412,
2014
68.
Implications of the recent low solar minimum for
the solar wind during the Maunder minimum
M. Lockwood and M.J. Owens, Astrophys. J. Lett., 781, doi:10.1088/2041-8205/781/1/L7, 2014
67.
The 22-year Hale cycle in cosmic ray intensity:
Evidence for direct heliospheric modulation
S.R. Thomas, M.J. Owens and M.
Lockwood, Sol. Phys., 289, 1, 407-421,doi: 10.1007/s11207-013-0341-5,
2014
66.
The heliospheric magnetic field
M.J. Owens and R.J. Forsyth, Living Reviews in Solar Physics, 10, 5, doi: 10.12942/lrsp-2013-5, 2013
65.
Reconstruction of geomagnetic activity and
near-Earth interplanetary conditions over the past 167 years: 2. A new
reconstruction of the interplanetary magnetic field
M. Lockwood, L. Barnard, H. Nevanlinna, M.J. Owens, R.G. Harrison, A.P.
Rouillard and C.J. Davis, Ann. Geophys., 31, 1979-1992,
doi:10.5194/angeo-31-1979-2013, 2013
64.
Reconstruction of geomagnetic activity and
near-Earth interplanetary conditions over the past 167 years: 1. A new
geomagnetic data composite
M. Lockwood, L. Barnard, H. Nevanlinna, M.J. Owens, R.G. Harrison, A.P.
Rouillard and C.J. Davis, Ann. Geophys., 31, 1957-1977,
doi:10.5194/angeo-31-1957-2013, 2013
63.
Using coordinated observations in polarized white
light and Faraday rotation to probe the spatial position and magnetic field of
an interplanetary sheath
M. Xiong, J.A. Davies, X. Feng and M.J.
Owens, R.A. Harrison, C.J. Davis and Y.D. Liu, Astrophys. J., 777, 32, doi:10.1088/0004-637X/777/1/322013, 2013
62.
Solar origin of heliospheric magnetic field
inversions: Evidence for coronal loop opening within pseudostreamers
M.J. Owens, N.U. Crooker and M.
Lockwood, J. Geophys.
Res., 118, 1868–1879, doi:10.1002/jgra.50259, 2013
61. A 27-day persistence model of near-Earth solar wind
conditions: A long lead-time forecast tool and a benchmark for dynamical models
M.J. Owens, R. Challen, J. Methven,
E. Henley and D. Jackson, Space Weather,
11, 225–236, doi:10.1002/swe.20040, 2013
60. Comment on "What causes the flux excess in the
heliospheric magnetic field?" by E.J. Smith
M. Lockwood and M.J. Owens J. Geophys. Res.,
118, doi: 10.1002/jgra.50223, 2013
59.
Tracking the momentum flux of a CME and quantifying
its influence on geomagnetically induced currents at Earth
N.P. Savani, A. Vourlidas, A. Pulkkinen, T.
Nieves-Chinchilla, B. Lavraud and M.J. Owens, Space Weather, 11, 245–261, doi:10.1002/swe.20038, 2013
58. Effects of Thomson-scattering geometry on
white-light imaging of an interplanetary shock: Synthetic observations from forward
magnetohydrodynamic modelling
M. Xiong, J. A. Davies, M. M. Bisi, M.
J. Owens, R. A. Fallows, G. D. Dorrian, Sol.
Phys., doi: 10.1007/s11207-012-0047-0,
2013
57. Heliospheric modulation of galactic cosmic rays
during grand solar minima: Past and future variations
M.J. Owens, I. Usoskin, M. Lockwood,
Geophys. Res. Lett, 39, L19102,
doi:10.1029/2012GL053151, 2012
56.
Multi-spacecraft observation of magnetic cloud
erosion by magnetic reconnection during propagation
A. Ruffenach, B. Lavraud, M.J. Owens, J.-A. Sauvaud, N. Savani,
A.P. Rouillard, P. Demoulin, A. Opitz, A. Fedorov, J. Jacquey,
V. Genot, J.G. Luhmann, C.T. Russell, C.J. Farrugia,
A.B. Galvin and V. Angelopolous, J. Geophys. Res., 117,
A09101, doi: 10.1029/2012JA017624,
2012
55.
Solar cycle 24: What’s the Sun
up to?
M. Lockwood, M.J. Owens, L. Barnard,
C. Davis and S. Thomas, Astron. & Geophys., 53 (3), 3.09-3.15, doi:10.1111/j.1468-4004.2012.53309.x, 2012
54. Observational Tracking of the 2D Structure of
Coronal Mass Ejections between the Sun and 1 AU
N. Savani, J.A. Davies, C.J. Davis, D. Shiota, A.P. Rouillard, M.J. Owens, K. Kusano, V. Bothmer, S.P.
Bamford, C.J. Lintott and A. Smith, Sol.
Phys., 1-19 , doi:10.1007/s11207-012-0041-6, 2012
53. Cyclic loss of open solar flux since 1868: The link
to heliospheric current sheet tilt and implications for the Maunder minimum
M.J. Owens and M. Lockwood, J. Geophys. Res.,
117, A04102, doi:
10.1029/2011JA017193, 2012
52.
Implications of non-cylindrical flux ropes for
magnetic cloud reconstruction techniques and interpretation of double flux-rope
events
M.J. Owens, N.P. Savani, B. Lavraud and A. Ruffenach, Sol. Phys., 278, 2, 435-446,
doi:10.1007/s11207-012-9939-2, 2012
51. Predicting the arrival of high-speed solar wind
streams at Earth using the STEREO Heliographic Imagers
C.J. Davis, J.A. Davies, M.J. Owens
and M. Lockwood, Space Weather, 10, S02003, doi:10.1029/2011SW000737,
2012
50.
The Persistence of Solar Activity Indicators and
the Descent of the Sun into Maunder Minimum Conditions
M. Lockwood, M.J. Owens, L. Barnard,
C. Davis and F. Steinhilber, Geophys. Res. Lett.,
38, L225105, doi:10.1029/2011GL04981, 2011
49.
Solar cycle 24: Implications for energetic
particles and long-term space climate change
M.J. Owens, M. Lockwood, L. Barnard
and C.J. Davis, Geophys. Res. Lett., 38, L19106,
doi:10.1029/2011GL049328, 2011
48. Predicting
space climate change
L. Barnard, M. Lockwood, M.A. Hapgood, M.J.
Owens, C.J. Davis and F. Steinhilber, Geophys. Res. Lett., 38, L16103, doi:10.1029/2011GL048489,
2011
47. The solar influence on the probability of
relatively cold UK winters in the future
M. Lockwood, R.G. Harrison, M.J. Owens,
L. Barnard, T. Woollings and F. Steinhilber, Env. Res. Lett., 6, pp 034004, doi:
10.1088/1748-9326/6/3/034004, 2011
46.
Interchange reconnection: Remote sensing of solar
signature and role in heliospheric magnetic flux budget
N.U. Crooker and M.J. Owens, Space Sci. Rev., doi:
10.1007/s11214-011-9748-1, 2011
45.
How is open solar magnetic flux lost over the solar
cycle?
M.J. Owens, N.U. Crooker and M. Lockwood, J. Geophys. Res., 116, A04111,
doi:10.1029/2010JA016039, 2011
44.
Centennial changes in the heliospheric field and
open solar flux: the consensus view from geomagnetic data and cosmogenic
isotopes and its implications
M. Lockwood and M.J. Owens, J. Geophys. Res.,
116, A04109, doi:10.1029/2010JA016220, 2011
43. In Situ Signatures of Interchange
Reconnection between Magnetic Clouds and Open Magnetic Fields: A Mechanism for
the Erosion of Polar Coronal Holes?
B. Lavraud, M.J.
Owens and A.P. Rouillard, Sol. Phys.,
270, 285-296, doi: 10.1007/s11207-011-9717-6, 2011
42.
Evolution of coronal mass ejection morphology with
increasing heliocentric distance. II. In situ observations
N.P. Savani, M.J. Owens, A.P.
Rouillard, R.J. Forsyth, K. Kusano, D. Shiota and R. Kataoka, Astrophys. J., 732, 117,
doi:10.1088/0004-637X/32/2/117, 2011
41.
Evolution of coronal mass ejection morphology with
increasing heliocentric distance. I. Geometric analysis
N.P. Savani, M.J. Owens, A.P.
Rouillard, R.J. Forsyth, K. Kusano, D. Shiota and R. Kataoka, Astrophys. J., 731, 109, doi:10.1088/0004-637X/731/2/109, 2011
40. The distribution of solar wind speeds during solar minimum:
Calibration for numerical solar wind modeling
constraints on the source of the slow solar wind
S.L. McGregor, W.J. Hughes, C.N. Arge, M.J. Owens and D.Odstrcil, J. Geophys.
Res, A03101,
doi:10.1029/2010JA015881, 2011
39.
Forward modelling to determine the observational
signatures of white-light imaging and interplanetary scintillation for the
propagation of an interplanetary shock in the ecliptic plane
M. Xiong,, A. R. Breen, M. M. Bisi, M. J. Owens, R.
A. Fallows, G.D. Dorrian, J. A. Davies, P. Thomasson, JASTP, 73, 1270-1280, doi:10.1016/j.jastp.2010.09.007, 2011
38. Magnetic discontinuities in the near-Earth solar
wind: Evidence of in-transit turbulence or remnants of coronal structure?
M.J. Owens, R. Wicks and T.S.
Horbury, Sol. Phys., 269, 411-420,
doi:10.1007/s11207-010-9695-0, 2011
37. Suprathermal Electron Flux Peaks at Stream Interfaces: Signature of Solar Wind Dynamics or
Tracer for Open Magnetic Flux Transport on the Sun?
N. U. Crooker, E. M. Appleton, N. A. Schwadron and M.J. Owens, J. Geophys. Res, 115, A11101, doi:10.1029/2010JA015496, 2010
36.
Numerical Simulation of the May 12, 1997 CME Event - the Role of Magnetic Reconnection
O. Cohen, G. Attrill, N.
Schwadron, N. Crooker, M. Owens, D.
Cooper and T. Gombosi, J. Geophys. Res, 115, A10104, doi:10.1029/2010JA015464,
2010
35. From the Sun to the Earth: the 13 May 2005 Coronal Mass Ejection
M.M. Bisi, A.R. Breen, B.V. Jackson,
R.A. Fallows, A.P. Walsh, Z. Mikic, P. Riley, C.J. Owen, A. Gonzalez-Esparza, E. Aguilar-Rodriguez, H. Morgan, E.A. Jensen, A.G.
Wood, M.J. Owens, M. Tokumaru, P.K.
Manoharan, I.V. Chashei, A.S. Giunta, J.A. Linker, V.I. Shishov,
S.A. Tyulbashev, G. Agalya, S.K. Glubokova, M.S.
Hamilton, K. Fujiki, P.P. Hick,
J.M. Clover and B. Pinter, Sol Phys., 265, 49-127,
doi:10.1007/s11207-010-9602-8, 2010
34.
Impact of coronal mass ejections, interchange
reconnection, and disconnection on heliospheric magnetic field strength
N.U. Crooker and M.J. Owens, SOHO-23:
Understanding a Peculiar Solar Minimum,
ASP Conference Series, edited by S. Cranmer, T. Hoeksema, and J. Kohl, in press, San Francisco: Astronomical Society of the
Pacific, p.279, 2010
33. Galactic cosmic ray hazard in the unusual extended
solar minimum between solar cycle 23 and 24
N.A. Schwadron, A. Boyd, M. Golightly, K. Kozarev, H.
Spence, L. Townsend and M.J. Owens, Space Weather, 8, S00E04,
doi:10.1029/2010SW000567, 2010
32.
Observational evidence of a CME distortion directly
attributable to a structured solar wind
N. Savani, M.J. Owens, A.P.
Rouillard, R. Forsyth and J.A. Davis, Astrophys. J. Lett., 714, 128-132,
doi:10.1088/2041-8205/714/1/L128, 2010
31. Probing the
large-scale topology of the heliospheric magnetic field using Jovian electrons
M.J. Owens, T.S. Horbury and C.N.
Arge, Astrophys. J., 714, 1617–1623, doi:10.1088/0004-637X/714/2/1617, 2010
30. Cone model-based SEP event scheme for applications
to multipoint observations
J.G. Luhmann, S.A. Ledvina, D. Odstrcil, M.J.
Owens, X.-P. Zhao, Y. Liu and P.Riley,
J. Adv. Space. Res, 46, 1-21, doi:10.1016/j.asr.2010.03.011,
2010
29.
The
variation of solar wind correlation lengths over three solar cycles
R. Wicks, M.J. Owens, T.S. Horbury, Sol. Phys., 262, 191
– 198, doi: 10.1007/s11207-010-9509-4, 2009
28.
The radial width
of a Coronal Mass Ejection between 0.1 and 0.4AU estimated from the
Heliospheric Imager on STEREO
N. Savani, A.P. Rouillard, R.J. Forsyth, M.J. Owens and J.A. Davies, Ann. Geophys., 27, 4349–4358, 2009
27. The
expected imprint of flux rope geometry on suprathermal
electrons in magnetic clouds
M.J. Owens, N.U. Crooker, T.S. Horbury, Ann. Geophys.,
27, 4057-4067, 2009
26. The formation of large-scale current sheets within
magnetic clouds
M.J. Owens, Sol. Phys.,
141, doi:10.1007/s11207-009-9442-6, 2009
25.
Excess open solar magnetic flux from satellite
data: I. Analysis of the 3rd perihelion Ulysses pass
M. Lockwood, M.J Owens, and A.P. Rouillard, J. Geophys. Res, 114, A11103,
doi:10.1029/2009JA014449, 2009
24. Excess open solar magnetic flux from satellite
data: II. A survey of kinematic effects
M. Lockwood, M.J. Owens, and A.P. Rouillard, J. Geophys. Res, 114, A11104,
doi:10.1029/2009JA014450, 2009
23. The
accuracy of using the Ulysses result of the spatial invariance of the radial
heliospheric field to compute the open solar flux
M. Lockwood and M.J. Owens, Astrophys. J., 701, 964-973,
doi:10.1088/0004-637X/701/2/964, 2009
22.
Space
Physics Concepts for Graduate Students: An Activities Based Approach
N. A. Gross, N. Arge, R. Bruntz, A. G. Burns, W. J. Hughes, D. Knipp, J. Lyon,
S. McGregor, M.J Owens, G. Siscoe, S. C. Solomon, M. Wiltberger, EOS, 90, 13-14, 2009,
doi:10.1029/2009EO020001, 2009
21.
Combining remote and in situ observations of
coronal mass ejections to better constrain magnetic cloud reconstruction
M.J. Owens, J. Geophys. Res., 113, A12102, doi:10.1029/2008JA013589, 2008
20.
Estimating total heliospheric magnetic flux
from single-point in situ measurements
M.J. Owens, C.N.Arge,
N.U. Crooker, N.A. Schwadron and T.S. Horbury, J. Geophys.
Res., 113, A12103, doi:10.1029/2008JA013677, 2008
19.
Conservation of open solar magnetic flux and the
floor in the heliospheric magnetic field
M.J. Owens, N.U. Crooker, N.A. Schwadron, T.S. Horbury,
S. Yashiro, H. Xie, O.C. St Cyr and N, Gopalswamy, Geophys.
Res. Lett., L20108, doi:10.1029/2008GL035813, 2008
18. Suprathermal electron evolution in a Parker spiral
magnetic field
M.J. Owens, N.U.
Crooker and N.A. Schwadron, J. Geophys. Res., 113, A11104, doi:10.1029/2008JA013294,
2008
17.
The
ambient solar wind's effect on ICME transit times
A.W. Case, H.E. Spence, M.J. Owens, P.
Riley and D. Odstrcil, Geophys. Res. Lett.,
35, L15105,
doi:10.1029/2008GL034493, 2008
16.
Metrics for solar wind prediction models:
Comparison of empirical, hybrid and physics-based schemes with 8-years of L1
observations
M.J. Owens, H.E. Spence, S. McGregor, W.J. Hughes, J.M.
Quinn, C.N. Arge, P. Riley, J. Linker and D. Odstrcil, Space Weather, 6,
S08001, doi:10.1029/2007SW000380, 2008
15.
Analysis
of the Magnetic Field Discontinuity at the PFSS and Schatten Current Sheet
Interface in the WSA Model
S. McGregor, W.J. Hughes, C. Arge and M.J.
Owens, J. Geophys. Res., 113, A08112,
doi:10.1029/2007JA012330, 2008
14. The
Heliospheric Magnetic Field Over the Hale Cycle
N. Schwadron, M.J. Owens, and
N. Crooker, Astrophysics and Space Sciences Transactions, 4 (1), 19-26, doi:
10.5194/astra-4-19-2008,
2008
13.
Predicting
magnetospheric dynamics with a coupled Sun-to-Earth model: challenges and first
results
V. Merkin, M.J. Owens, H.
Spence, W.J. Hughes and J. Quinn, Space Weather, 5, S12001, doi:10.1029/2007SW000335, 2007
12.
Reconciling
the electron counterstreaming and dropout occurrence
rates with the heliospheric flux budget
M.J. Owens and
N.U. Crooker, J. Geophys. Res., 112, A06106,
doi:10.1029/2006JA012159, 2007
11.
Role
of coronal mass ejections in the heliospheric Hale cycle
M.J. Owens, N.A.
Schwadron, N.U. Crooker, H.E. Spence and W.J. Hughes, Geophys.
Res. Lett., 34, L06104, doi:10.1029/2006GL028795, 2007
10. Magnetic
cloud distortion resulting from propagation through a structured solar wind:
Models and observations
M.J. Owens, J.
Geophys. Res., 111, A12109,
doi:10.1029/2006JA011903, 2006
9.
Coronal
mass ejections and magnetic flux buildup in the heliosphere
M.J. Owens and
N.U. Crooker, J. Geophys. Res., 111, A10104,
doi:10.1029/2006JA011641, 2006
8.
A
kinematically-distorted flux-rope model for magnetic clouds
M.J. Owens, V.G.
Merkin and P. Riley, J. Geophys. Res., 111,
A03104, doi:10.1029/2005JA011460, 2006
7.
An
event-based approach to validating solar wind speed predictions: High speed
enhancements in the Wang-Sheeley-Arge model
M.J. Owens, C.N.
Arge, H.E. Spence and A. Pembroke, J. Geophys.
Res., 110, A12105, doi:10.1029/2005JA011343, 2005
6.
Characteristic
magnetic field and speed properties of interplanetary coronal mass ejections
and their sheath regions
M.J. Owens, P.J. Cargill, C. Pagel,
G.L. Siscoe and N.U. Crooker, J. Geophys. Res.,
110, A01105,
doi:10.1029/2004JA010814, 2005
5.
Understanding
electron heat flux signatures in the solar wind
C. Pagel, N.U. Crooker, D.E. Larson, S.W. Kahler and M.J. Owens, J. Geophys. Res., 110, A01103,
doi:10.1029/2004JA010767, 2005
4.
Non-radial
solar wind flows induced by the motion of interplanetary coronal mass ejections
M.J. Owens and
P. Cargill, Ann. Geophys., 22, 4397-4406, doi: 10.5194/angeo-22-4397-2004, 2004
3.
On the
evolution of the solar wind between 1 and 5AU at the time of the
Cassini-Jupiter flyby: multi spacecraft observations of ICMEs including the
formation of a Merged Interaction Region
P.G. Hanlon, M.K. Dougherty, R.J. Forsyth, M.J. Owens, K.C. Hansen, G.
Tóth, F.J. Crary and D.T. Young, J. Geophys.
Res., 109, A09S03, doi:10.1029/2003JA010112, 2004
2.
Predictions
of the arrival time of Coronal Mass Ejections at 1 AU: an analysis of the
causes of errors
M.J. Owens and
P. Cargill, Ann. Geophys., 22 (2),
661-671, 2004
1.
Correlation
of magnetic field intensities and solar wind speeds of events observed by ACE
M.J. Owens and
P.J. Cargill, J. Geophys. Res., 107
(A5), 1050, doi:10.1029/2001JA000238, 2002